Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Tufariello, J. J. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 2, edited by A. Padwa, ch. 9, pp. 83-168. New York: John Wiley.

The perspective view of the structure of (5S,SS)-7methyl-8-p-toluenesulfinyl-1,6-dioxaspiro[4.5]dec-7-ene reveals the S absolute configuration of the spirokelatic atom, C11.

Acta Cryst. (1995). C51, 93-94

(5S,SS)-7-Methyl-8-p-toluenesulfinyl-1,6dioxaspiro[4.5]dec-7-ene

R. RETOUX

Laboratoire des Fluorures - URA 449 Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX. France

P. HAYES AND C. MAIGNAN

Laborai dire de Synthèse Organique - URA 482 Faculté des Sciences. Université du Maine. 72017 Le Mans CEDEX, France

(Received 23 March 1994; accepted 24 June 1994)

Abstract

The structure determination of C₁₆H₂₀O₃S based on Xray single-crystal diffraction confirms the S absolute configuration of the spiroketalic C atom.

Comment

The intermolecular hetero-Diels-Alder reaction between α,β -unsaturated carbonyl compounds and vinyl ethers has been applied extensively to the synthesis of natural products (Boger & Weinzed, 1987). In connection with our interest in using chiral sulfoxides in asymmetric syntheses, we sought new strategies for constructing spiroketal skeletons by heterocycloaddition using an enantiopure sulfinyl-hetero diene. (+)-(S)-3p-Toluenesulfinyl-3-buten-2-one (Bonfand, Gosselin & Maignan, 1992) reacted smoothly with sensitive 2methylene tetrahydrofuran yielding 1:1 diastereomeric dioxaspiro adducts. These spiroketals were completely separated by liquid chromatography on silica gel. In order to obtain information on the absolute configuration of the spirokelatic C atom, we obtained single crystals of one diastereomer, (I), with a view to determining its structure by X-ray diffraction.

©1995 International Union of Crystallography Printed in Great Britain - all rights reserved

displacement parameters of the H atoms have been divided by ten. Displacement ellipsoids are plotted at the 50% probability level.

Experimental

Recrystallization of the title compound from ether after liquid chromatography gave small colourless platelets. Suitable crystals for X-ray analysis were very difficult to find. Firelly, a parallelepipedic crystal was chosen and its quality was tested using Laue photographs.

Crystal data	
$C_{16}H_{20}O_{3}S$ $M_{r} = 292.37$ Orthorhombic $P2_{1}2_{1}2_{1}$ $a = 7.9680 (14) \text{ Å}$ $b = 8.1104 (11) \text{ Å}$ $c = 23.761 (3) \text{ Å}$ $V = 1535.5 (4) \text{ Å}^{3}$ $7 = 4$	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 32 reflections $\theta = 12.6-15.9^{\circ}$ $\mu = 0.205$ mm ⁻¹ T = 293 (2) K Plate $0.741 \times 0.471 \times 0.201$ mm
$D_x = 1.265 \text{ Mg m}^{-3}$	Colourless
Data collection	
Stoe Siemens AED-2 dif- fractometer $\omega - 2\theta$ scans Absorption correction: none 3115 measured reflections 2626 independent reflections 2268 observed reflections $[I > 2\sigma(I)]$	$R_{int} = 0.0602$ $\theta_{max} = 25^{\circ}$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 9$ $l = -28 \rightarrow 28$ 3 standard reflections frequency: 60 min intensity variation: 8%
Refinement	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0514$ $wR(F^2) = 0.1337$ S = 1.0462619 reflections

Extinction correction: SHELXL93 (Sheldrick. 1993) Extinction coefficient: 0.0069 (39)

Acta Crystallographica Section C ISSN 0108-2701 ©1995 . .

216 parametersAtomic scattering factors
$$w = 1/[\sigma^2(F_o^2) + (0.1214P)^2$$
from International Tables $+ 0.0307P]$ from Crystallography (1992,where $P = (F_o^2 + 2F_c^2)/3$ Vol. C, Tables 4.2.6.8 and $(\Delta/\sigma)_{max} = -0.094$ 6.1.1.4) $\Delta \rho_{max} = 0.290$ e Å⁻³Absolute configuration: $\Delta \rho_{min} = -0.237$ e Å⁻³Flack (1983)

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Z	U_{eq}
S	0.92832 (10)	0.51629 (9)	0.86263 (3)	0.0538 (3)
01	0.8354 (5)	0.6597 (3)	0.88601 (11)	0.0825 (9)
02	0.8600 (2)	0.3954 (3)	0.70150 (8)	0.0474 (5)
03	0.6470 (3)	0.5830 (3)	0.68440 (9)	0.0577 (6)
CI	0.8600 (4)	0.3407 (4)	0.90273 (12)	0.0455 (6)
C2	0.7631 (4)	0.3635 (4)	0.95041 (13)	0.0546 (7)
C3	0.7202 (5)	0.2284 (5)	0.98276 (13)	0.0588 (8)
C4	0.7738 (4)	0.0711 (4)	0.96915 (13)	0.0565 (8)
C5	0.8691 (5)	0.0501 (4)	0.92021 (14)	0.0548 (7)
C6	0.9125 (4)	0.1838 (4)	0.88756 (12)	0.0494 (7)
C7	0.7331 (7)	-0.0760 (6)	1.00576 (2)	0.0862 (13)
C8	0.8320 (3)	0.4630 (3)	0.79788 (11)	0.0420 (6)
C9	0.6446 (4)	0.4595 (4)	0.79664 (12)	0.0508 (7)
C10	0.5887 (4)	0.3595 (4)	0.74638 (14)	0.0522 (7)
C11	0.6811 (4)	0.4146 (4)	0.69368 (12)	0.0449 (6)
C12	0.9264 (3)	0.4328 (3)	0.75319(11)	0.0407 (6)
C13	0.6377 (5)	0.3249 (4)	0.6392 (2)	0.0625 (8)
C14	0.6653 (6)	0.4585 (7)	0.5951 (2)	0.0785 (11)
C15	0.6204 (6)	0.6126 (5)	0.6258 (2)	0.0750 (11)
C16	1.11562 (4)	0.4248 (4)	0.74984 (15)	0.0585 (8)

Table 2. Selected geometric parameters (Å, °)

14010 21 5			
S-01	1.486 (3)	C8—C9	1.493 (4)
SC8	1.773 (3)	C9-C10	1.511 (5)
S-C1	1.798 (3)	C10-C11	1.520 (4)
C1C2	1.383 (5)	C11—O3	1.410 (4)
C1C6	1.387 (4)	C11—O2	1.446 (4)
C2—C3	1.382 (5)	C11—C13	1.525 (5)
C3C4	1.383 (5)	O2—C12	1.371 (3)
C4C5	1.399 (5)	C12—C16	1.512 (4)
C4—C7	1.512 (5)	C13-C14	1.524 (6)
C5—C6	1.378 (4)	C14C15	1.490 (6)
C8-C12	1.324 (4)	C15—O3	1.429 (4)
O1—S—C8	107.4 (2)	C8-C9-C10	108.7 (2)
01—S—C1	105.7 (2)	C9-C10-C11	110.5 (2)
C8SC1	97.79 (12)	O3-C11O2	108.3 (2)
C2C1C6	120.3 (3)	O3—C11—C10	108.7 (3)
C2-C1S	119.8 (2)	O2—C11—C10	109.9 (2)
C6C1S	119.8 (2)	O3-C11-C13	106.6 (2)
C3C2C1	119.2 (3)	O2-C11-C13	106.3 (3)
C2-C3-C4	121.7 (3)	C10-C11-C13	116.7 (3)
C3-C4-C5	118.3 (3)	C12-02-C11	118.1 (2)
C3-C4-C7	121.8 (3)	C8-C12-O2	122.7 (2)
C5-C4-C7	119.9 (3)	C8-C12-C16	128.1 (3)
C6-C5-C4	120.5 (3)	O2-C12-C16	109.2 (2)
C5-C6-C1	120.0 (3)	C14C13C11	102.2 (3)
C12-C8-C9	123.3 (3)	C15-C14-C13	103.0 (3)
C12-C8-S	119.7 (2)	O3-C15-C14	107.5 (3)
C9—C8—S	117.0 (2)	C11—O3—C15	110.1 (3)

The determination of the absolute configuration was possible from the known S configuration of the sulfoxide group in the starting heterodiene; using the method described by Flack (1983), the absolute configuration was confirmed by the calculations (*SHELXL93*; Sheldrick, 1993). H atoms were refined as rigid groups using the *AFIX* card of the *SHELXL93* program.

Data collection: DIF4 (Stoe & Cie, 1988a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe & Cie, 1988b). Pro-

gram(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990) option *TREF*. Program(s) used to refine structure: *SHELXL*93. Molecular graphics: *ORTEP* (Johnson, 1965).

The authors thank Professor M. Leblanc, University of Maine, for helpful discussions.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: PA1118). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Boger, D. L. & Weinzed, S. M. (1987). Hetero-Diels-Alder Methodology in Organic Synthesis. New York: Academic Press.
- Bonfand, E., Gosselin, P. & Maignan, C. (1992). Tetrahedron Lett. 33, 2347-2348.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1990). SHELXS86. Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). *REDU4. Data Reduction Program.* Version 6.2. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1995). C51, 94-96

The Diels-Alder Adduct of an Enantiopure 2-Sulfinyldiene and Maleimide: (1*S*,2*R*,3*S*,*SR*)-3-Methyl-5-*p*-toluenesulfinylcyclohex-4-en-1,2dicarboximide

P. GOSSELIN, E. BONFAND AND C. MAIGNAN

Laboratoire de Synthèse Organique - URA 482 Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX, France

R. RETOUX

Laboratoire des Fluorures - URA 449 Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX, France

(Received 23 March 1994; accepted 24 June 1994)

Abstract

The title compound, $C_{16}H_{17}NO_3S$, is the single adduct obtained by cycloaddition of (E)-(+)-(R)-2-*p*-toluenesulfinyl-1,3-pentadiene with maleimide. The ab-